stk.host_guest.Complex
- class stk.host_guest.Complex(host, guests, num_processes=1, optimizer=<stk._internal.optimizers.null.NullOptimizer object>)[source]
Bases:
TopologyGraph
Represents a host-guest complex topology graph.
Host and guest building blocks do not require functional groups.
Examples
Construction
You can use
ConstructedMolecule
instances as the host, but you should turn them into aBuildingBlock
first. For guest molecules, you must define aGuest
from aBuildingBlock
.import stk host = stk.ConstructedMolecule( topology_graph=stk.cage.FourPlusSix( building_blocks=( stk.BuildingBlock( smiles='NC1CCCCC1N', functional_groups=[ stk.PrimaryAminoFactory(), ], ), stk.BuildingBlock( smiles='O=Cc1cc(C=O)cc(C=O)c1', functional_groups=[stk.AldehydeFactory()], ), ), optimizer=stk.MCHammer(), ), ) complex = stk.ConstructedMolecule( topology_graph=stk.host_guest.Complex( host=stk.BuildingBlock.init_from_molecule(host), guests=stk.host_guest.Guest( building_block=stk.BuildingBlock('[Br][Br]'), ), ), )
You can also generate complexes with multiple
Guest
molecules.import stk host = stk.ConstructedMolecule( topology_graph=stk.cage.FourPlusSix( building_blocks=( stk.BuildingBlock( smiles='NC1CCCCC1N', functional_groups=[ stk.PrimaryAminoFactory(), ], ), stk.BuildingBlock( smiles='O=Cc1cc(C=O)cc(C=O)c1', functional_groups=[stk.AldehydeFactory()], ), ), optimizer=stk.MCHammer(), ), ) guest1 = stk.host_guest.Guest( building_block=stk.BuildingBlock('BrBr'), displacement=(0., 3., 0.), ) guest2 = stk.host_guest.Guest( building_block=stk.BuildingBlock('C1CCCC1'), ) complex = stk.ConstructedMolecule( topology_graph=stk.host_guest.Complex( host=stk.BuildingBlock.init_from_molecule(host), guests=(guest1, guest2), ), )
Suggested Optimization
For
Complex
topologies, it is recommended to use theSpinner
optimizer. It is also recommended that the building blocks are already optimized prior to construction. This optimizer will work on multi-guest systems.import stk host = stk.ConstructedMolecule( topology_graph=stk.cage.FourPlusSix( building_blocks=( stk.BuildingBlock( smiles='NC1CCCCC1N', functional_groups=[ stk.PrimaryAminoFactory(), ], ), stk.BuildingBlock( smiles='O=Cc1cc(C=O)cc(C=O)c1', functional_groups=[stk.AldehydeFactory()], ), ), optimizer=stk.MCHammer(), ), ) guest1 = stk.host_guest.Guest( building_block=stk.BuildingBlock('BrBr'), displacement=(0., 3., 0.), ) guest2 = stk.host_guest.Guest( building_block=stk.BuildingBlock('C1CCCC1'), ) complex = stk.ConstructedMolecule( topology_graph=stk.host_guest.Complex( host=stk.BuildingBlock.init_from_molecule(host), guests=(guest1, guest2), optimizer=stk.Spinner(), ), )
Changing the Position of the Guest
You can change the position and orientation of the
Guest
, as well as its displacementimport stk host = stk.ConstructedMolecule( topology_graph=stk.cage.FourPlusSix( building_blocks=( stk.BuildingBlock( smiles='BrCCBr', functional_groups=[stk.BromoFactory()], ), stk.BuildingBlock( smiles='BrCC(Br)CBr', functional_groups=[stk.BromoFactory()], ), ), ), ) guest_building_block = stk.BuildingBlock('[Br][Br]') guest = stk.host_guest.Guest( building_block=guest_building_block, # Apply a rotation onto the guest molecule such that # the vector returned by get_direction() has the same # direction as [1, 1, 1]. start_vector=guest_building_block.get_direction(), end_vector=[1, 1, 1], # Change the displacement of the guest. displacement=[5.3, 2.1, 7.1], ) complex = stk.ConstructedMolecule( topology_graph=stk.host_guest.Complex( host=stk.BuildingBlock.init_from_molecule(host), guests=guest, ), )
Initialize an instance of
Complex
.- Parameters:
host (BuildingBlock) – The host molecule.
guests (Union[Guest, abc.Iterable[Guest]]) – The guest molecules. Can be a single
Guest
instance if only one guest is being used.num_processes (int) – The number of parallel processes to create during
construct()
.optimizer (Optimizer) – Used to optimize the structure of the constructed molecule.
Methods
Return a clone.
Construct a
ConstructedMolecule
.Yield the building blocks.
Get the number of times building_block is present.
Return a clone holding different building blocks.
- construct()
Construct a
ConstructedMolecule
.- Returns:
The data describing the
ConstructedMolecule
.- Return type:
- get_building_blocks()
Yield the building blocks.
Building blocks are yielded in an order based on their position in the topology graph. For two equivalent topology graphs, but with different building blocks, equivalently positioned building blocks will be yielded at the same time.
- Yields:
A building block of the topology graph.
- Return type:
- get_num_building_block(building_block)
Get the number of times building_block is present.
- Parameters:
building_block (BuildingBlock) – The building block whose frequency in the topology graph is desired.
- Returns:
The number of times building_block is present in the topology graph.
- Return type:
- with_building_blocks(building_block_map)
Return a clone holding different building blocks.
- Parameters:
building_block_map (dict[BuildingBlock, BuildingBlock]) – Maps a building block in the current topology graph to the building block which should replace it in the clone. If a building block should be not replaced in the clone, it can be omitted from the map.
- Returns:
The clone.
- Return type: