"""
Collapser
=========
"""
import mchammer as mch
from .optimizer import Optimizer
from .utilities import get_long_bond_ids, get_mch_bonds, get_subunits
[docs]class Collapser(Optimizer):
"""
Performs rigid-body collapse of molecules [1]_.
Examples
--------
*Structure Optimization*
Using :class:`.Collapser` will lead to
:class:`.ConstructedMolecule` structures without long bonds.
.. testcode:: structure-optimization
import stk
bb1 = stk.BuildingBlock('NCCN', [stk.PrimaryAminoFactory()])
bb2 = stk.BuildingBlock('O=CCC=O', [stk.AldehydeFactory()])
polymer = stk.ConstructedMolecule(
topology_graph=stk.polymer.Linear(
building_blocks=(bb1, bb2),
repeating_unit='AB',
num_repeating_units=2,
optimizer=stk.Collapser(),
),
)
Optimisation with :mod:`stk` simply collects the final position
matrix. The optimisation's trajectory can be output using the
:mod:`MCHammer` implementation if required by the user [1]_.
The open-source optimization code :mod:`MCHammer` specializes in
the `collapsing` of molecules with long bonds like those
constructed by :mod:`stk`. This code is entirely nonphysical and
is, therefore, completely general to any chemistry.
References
----------
.. [1] https://github.com/andrewtarzia/MCHammer
"""
[docs] def __init__(
self,
step_size=0.1,
distance_threshold=1.5,
scale_steps=True,
):
"""
Initialize an instance of :class:`.Collapser`.
Parameters
----------
step_size : :class:`float`, optional
The relative size of the step to take during collapse in
Angstrom.
distance_threshold : :class:`float`, optional
Distance between distinct building blocks to use as
threshold for halting collapse in Angstrom.
scale_steps : :class:`bool`, optional
Whether to scale the step of each distinct building block
by its relative distance from the molecules centroid.
"""
self._optimizer = mch.Collapser(
step_size=step_size,
distance_threshold=distance_threshold,
scale_steps=scale_steps,
)
[docs] def optimize(self, state):
# Define MCHammer molecule to optimize.
mch_mol = mch.Molecule(
atoms=(
mch.Atom(
id=atom.get_id(),
element_string=atom.__class__.__name__,
)
for atom in state.get_atoms()
),
bonds=get_mch_bonds(state),
position_matrix=state.get_position_matrix(),
)
# Run optimization.
mch_mol, result = self._optimizer.get_result(
mol=mch_mol,
bond_pair_ids=tuple(get_long_bond_ids(state)),
subunits=get_subunits(state),
)
return state.with_position_matrix(
position_matrix=mch_mol.get_position_matrix()
)