Source code for stk._internal.topology_graphs.cof.periodic_kagome

from collections import abc

import numpy as np

from stk._internal.building_block import BuildingBlock
from stk._internal.optimizers.null import NullOptimizer
from stk._internal.optimizers.optimizer import Optimizer
from stk._internal.reaction_factories.generic_reaction_factory import (
    GenericReactionFactory,
)
from stk._internal.reaction_factories.reaction_factory import ReactionFactory
from stk._internal.topology_graphs.edge import Edge

from .cof import Cof
from .vertices import LinearVertex, NonLinearVertex


[docs] class PeriodicKagome(Cof): """ Represents a periodic kagome COF topology graph. Unoptimized construction .. moldoc:: import moldoc.molecule as molecule import stk cof = stk.ConstructedMolecule( topology_graph=stk.cof.PeriodicKagome( building_blocks=( stk.BuildingBlock( smiles='BrCC(Br)', functional_groups=[stk.BromoFactory()], ), stk.BuildingBlock( smiles='BrC1C(Br)CC(Br)C(Br)C1', functional_groups=[stk.BromoFactory()], ), ), lattice_size=(3, 3, 1), ), ) moldoc_display_molecule = molecule.Molecule( atoms=( molecule.Atom( atomic_number=atom.get_atomic_number(), position=position, ) for atom, position in zip( cof.get_atoms(), cof.get_position_matrix(), ) ), bonds=( molecule.Bond( atom1_id=bond.get_atom1().get_id(), atom2_id=bond.get_atom2().get_id(), order=( 1 if bond.get_order() == 9 else bond.get_order() ), ) for bond in cof.get_bonds() if all(p == 0 for p in bond.get_periodicity()) ), ) ``Collapser(scale_steps=False)`` optimized construction .. moldoc:: import moldoc.molecule as molecule import stk cof = stk.ConstructedMolecule( topology_graph=stk.cof.PeriodicKagome( building_blocks=( stk.BuildingBlock( smiles='BrCC(Br)', functional_groups=[stk.BromoFactory()], ), stk.BuildingBlock( smiles='BrC1C(Br)CC(Br)C(Br)C1', functional_groups=[stk.BromoFactory()], ), ), lattice_size=(3, 3, 1), optimizer=stk.Collapser(scale_steps=False), ), ) moldoc_display_molecule = molecule.Molecule( atoms=( molecule.Atom( atomic_number=atom.get_atomic_number(), position=position, ) for atom, position in zip( cof.get_atoms(), cof.get_position_matrix(), ) ), bonds=( molecule.Bond( atom1_id=bond.get_atom1().get_id(), atom2_id=bond.get_atom2().get_id(), order=( 1 if bond.get_order() == 9 else bond.get_order() ), ) for bond in cof.get_bonds() if all(p == 0 for p in bond.get_periodicity()) ), ) Building blocks with four and two functional groups are required for this topology graph. When using a :class:`dict` for the `building_blocks` parameter, as in :ref:`cof-topology-graph-examples`: *Multi-Building Block COF Construction*, a :class:`.BuildingBlock`, with the following number of functional groups, needs to be assigned to each of the following vertex ids: | 4-functional groups: 0 to 2 | 2-functional groups: 3 to 8 Note that optimizers may not optimize the :class:`.PeriodicInfo`. The documentation of the optimizer will state if it does. See :class:`.Cof` for more details and examples. """ def __init__( self, building_blocks: ( abc.Iterable[BuildingBlock] | dict[BuildingBlock, tuple[int, ...]] ), lattice_size: tuple[int, int, int], vertex_alignments: dict[int, int] | None = None, reaction_factory: ReactionFactory = GenericReactionFactory(), num_processes: int = 1, optimizer: Optimizer = NullOptimizer(), scale_multiplier: float = 1.0, ) -> None: """ Initialize a :class:`.PeriodicKagome` instance. Parameters: building_blocks: Can be a :class:`tuple` of :class:`.BuildingBlock` instances, which should be placed on the topology graph. Can also be a :class:`dict` which maps the :class:`.BuildingBlock` instances to the ids of the vertices it should be placed on. A :class:`dict` is required when there are multiple building blocks with the same number of functional groups, because in this case the desired placement is ambiguous. lattice_size: The size of the lattice in the x, y and z directions. vertex_alignments: A mapping from the id of a :class:`.Vertex` to an :class:`.Edge` connected to it. The :class:`.Edge` is used to align the first :class:`.FunctionalGroup` of a :class:`.BuildingBlock` placed on that vertex. Only vertices which need to have their default edge changed need to be present in the :class:`dict`. If ``None`` then the default edge is used for each vertex. Changing which :class:`.Edge` is used will mean that the topology graph represents different structural isomers. The edge is referred to by a number between ``0`` (inclusive) and the number of edges the vertex is connected to (exclusive). reaction_factory: The reaction factory to use for creating bonds between building blocks. num_processes: The number of parallel processes to create during :meth:`construct`. optimizer: Used to optimize the structure of the constructed molecule. scale_multiplier: Scales the positions of the vertices. Raises: :class:`AssertionError` If the any building block does not have a valid number of functional groups. :class:`ValueError` If the there are multiple building blocks with the same number of functional_groups in `building_blocks`, and they are not explicitly assigned to vertices. The desired placement of building blocks is ambiguous in this case. :class:`~.cof.UnoccupiedVertexError` If a vertex of the COF topology graph does not have a building block placed on it. :class:`~.cof.OverlyOccupiedVertexError` If a vertex of the COF topology graph has more than one building block placed on it. """ super().__init__( building_blocks=building_blocks, lattice_size=lattice_size, periodic=True, vertex_alignments=vertex_alignments, reaction_factory=reaction_factory, num_processes=num_processes, optimizer=optimizer, scale_multiplier=scale_multiplier, ) _lattice_constants = _a, _b, _c = ( np.array([1.0, 0.0, 0.0]), np.array([0.5, 0.866, 0.0]), np.array([0.0, 0.0, 5 / 1.7321]), ) _non_linears = ( NonLinearVertex(0, (1 / 4) * _a + (3 / 4) * _b + (0.5) * _c), NonLinearVertex(1, (3 / 4) * _a + (3 / 4) * _b + (1 / 2) * _c), NonLinearVertex(2, (3 / 4) * _a + (1 / 4) * _b + (1 / 2) * _c), ) _vertex_prototypes = ( *_non_linears, LinearVertex.init_at_center( id=3, vertices=(_non_linears[0], _non_linears[1]), ), LinearVertex.init_at_center( id=4, vertices=(_non_linears[0], _non_linears[2]), ), LinearVertex.init_at_center( id=5, vertices=(_non_linears[1], _non_linears[2]), ), LinearVertex.init_at_shifted_center( id=6, vertices=(_non_linears[0], _non_linears[1]), cell_shifts=((0, 0, 0), (-1, 0, 0)), lattice_constants=_lattice_constants, ), LinearVertex.init_at_shifted_center( id=7, vertices=(_non_linears[0], _non_linears[2]), cell_shifts=((0, 0, 0), (-1, 1, 0)), lattice_constants=_lattice_constants, ), LinearVertex.init_at_shifted_center( id=8, vertices=(_non_linears[1], _non_linears[2]), cell_shifts=((0, 0, 0), (0, 1, 0)), lattice_constants=_lattice_constants, ), ) _edge_prototypes = ( Edge(0, _vertex_prototypes[3], _vertex_prototypes[0]), Edge(1, _vertex_prototypes[3], _vertex_prototypes[1]), Edge(2, _vertex_prototypes[4], _vertex_prototypes[0]), Edge(3, _vertex_prototypes[4], _vertex_prototypes[2]), Edge(4, _vertex_prototypes[5], _vertex_prototypes[1]), Edge(5, _vertex_prototypes[5], _vertex_prototypes[2]), Edge(6, _vertex_prototypes[6], _vertex_prototypes[0]), Edge( id=7, vertex1=_vertex_prototypes[6], vertex2=_vertex_prototypes[1], periodicity=(-1, 0, 0), ), Edge(8, _vertex_prototypes[7], _vertex_prototypes[0]), Edge( id=9, vertex1=_vertex_prototypes[7], vertex2=_vertex_prototypes[2], periodicity=(-1, 1, 0), ), Edge(10, _vertex_prototypes[8], _vertex_prototypes[1]), Edge( id=11, vertex1=_vertex_prototypes[8], vertex2=_vertex_prototypes[2], periodicity=(0, 1, 0), ), )